US009336122B2

a2 United States Patent

Kilzer et al.

US 9,336,122 B2
May 10, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)
(65)

(60)

(1)

(52)

(58)

DEVICE HAVING CONFIGURABLE
BREAKPOINT BASED ON INTERRUPT
STATUS

Applicant: Microchip Technology Incorporated,
Chandler, AZ (US)

Kevin Kilzer, Chandler, AZ (US); Justin
Milks, Chandler, AZ (US); Sundar
Balasubramanian, Chandler, AZ (US);
Thomas Edward Perme, Chandler, AZ
(US); Kushala Javagal, Phoenix, AZ
us)

Inventors:

MICROCHIP TECHNOLOGY
INCORPORATED, Chandler, AZ (US)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 318 days.
Appl. No.: 13/888,370
Filed: May 7, 2013
Prior Publication Data
US 2013/0297975 Al Nov. 7, 2013

Related U.S. Application Data

Provisional application No. 61/643,707, filed on May
7,2012.

Int. Cl1.

GO6F 11/00 (2006.01)

GO6F 11736 (2006.01)

U.S. CL

CPC ... GO6F 11/3636 (2013.01); GO6F 11/3648

(2013.01)
Field of Classification Search
CPC GOG6F 13/385; GOGF 15/7814; GO6F 1/08;

GOG6F 11/0727; GO6F 11/0793; GOGF 13/24,
GOGF 9/4812; GOG6F 8/60; GOGF 11/25;
GOG6F 11/362-11/366; GOG6F 11/3466-11/3495;
GOG6F 11/323; GOGF 11/36; GOGF
11/3604-11/3696
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,951,696 A 9/1999 Naasehetal. 714/34
2005/0257089 Al 11/2005 Williams etal. 714/34
2007/0234017 Al* 10/2007 Moyer 7127227
2007/0266376 Al* 11/2007 Yimetal. ... 717/129

FOREIGN PATENT DOCUMENTS
WO 2007/112162 A2 10/2007 ..o GO6F 9/44
OTHER PUBLICATIONS

International Search Report and Written Opinion, Application No.
PCT/US2013/039938, 10 pages, Jun. 24, 2013.

* cited by examiner

Primary Examiner — Jason Bryan
(74) Attorney, Agent, or Firm — Slayden Grubert Beard
PLLC

(57) ABSTRACT

A processor device with debug capabilities has a central pro-
cessing unit, an interrupt controller, a status unit operable to
be set into a first mode indicating an interrupt has occurred or
in a second mode indicating normal execution of code, and a
debug unit coupled with said status unit and comprising a
configurable breakpoint, wherein a condition can be set thata
breakpoint is only activated if the device is operating in an
interrupt service routine.

20 Claims, 5 Drawing Sheets

% ISR Execuytion

Break tn

Ereakpoint

Event
I

ISR Mode ————
1 !
Break InNon- | 475 "7{}'0 7 A9
SR Mode SN ~>
JTI j

Always Break

ade

U.S. Patent May 10, 2016 Sheet 1 of 5 US 9,336,122 B2

b mE|

Trace e

Pulge Hegpct
Filters

Tipe Shnd Event Tuombinsrs ||

125

110

CPu B Freakpoinis
135

——]
Hardwars _ﬂ

!

i

I

{

E P! Twipit Dgtection
!

!

|

e

140
] - Tairat Logic ; -190
Patve Rejeot g :_ = ,fl_{

ey 185

fLaeca

145

Li 160 | | v 165

WTOAT
Tyrde Cotnter

150

1.

|
Fitters g 3 .
180 "';_ —A
E |
a
!
!
a
!
5
!
!
|
E
!
E

Sackgrond
Interfaos

Piiae Rejest i |)

170 Fi¥lers

jod eriberid el racchde

Figure 1

US 9,336,122 B2

Sheet 2 of 5

May 10, 2016

U.S. Patent

PRt B D

SUBRAD ROREE G

SEARPE

- HSHTE

QW‘N/.

TAMDRIR
HI

— NTTiaE

e

GeL —

aini

Fd e

R

B oo

s e

fpiinves

i
i

JogEsuny degy
RTE:

R SRR q

imeilods

fekiiog appe

0Z¢

i bt

P
et g ot

L

o

Ty

b

e

¢ ainbi4

US 9,336,122 B2

Sheet 3 of 5

May 10, 2016

U.S. Patent

&

N R KOS

iy selifaay

b R ST JRRS

LR X

EE X

LE R

zesBag iR e

RO
Sapuomsy

\ Hsies

OLE | iaetom smumang weea

MIoHEEREs

AR

W EsdiEeg

HeiRY=

~ 0Z%

U.S. Patent May 10, 2016 Sheet 4 of 5 US 9,336,122 B2

l
¢
}
i
H
: 450 1SR Execution
| wiD Q ; -
f > :
¢ ——
! fﬂese{o :
i T =
t i
t '
! Return System :
! from Reset t
! = interrupt 440 :
| : Detect i 00b
; Stage § {4
1| Interrupt N R
' | Detect [7430 | ; 460 |
] i Break In {0 !
ISR Mode)]
i 1
|| BreakinNon- | 475 7770 480
: LS) M ““‘L\ i
Breakpoint : ISR Mode } -
Event i1 Always Break 280 !
: Mode j
// !
/ 1
Final — |
{
1

Breakpoint

Figure 4

U.S. Patent May 10, 2016 Sheet 5 of 5 US 9,336,122 B2

500 - Microcontroller with
A Debug/Programming —— 510
interface

1]

iCDDatQCDCLK Vdd vss

frn Circuit Debugger/ ‘\

Programmer \
520

Host (PC) \\
530

US 9,336,122 B2

1
DEVICE HAVING CONFIGURABLE
BREAKPOINT BASED ON INTERRUPT
STATUS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 61/643,707 filed on May 7, 2012, entitled
“DEVICE HAVING CONFIGURABLE BREAKPOINT
BASED ON INTERRUPT STATUS”, which is incorporated
herein in its entirety.

TECHNICAL FIELD

The present disclosure relates processor devices, in par-
ticular microcontroller devices.

BACKGROUND

Modern microprocessors and microcontrollers include cir-
cuitry that efficiently allows analyzing a running program by
means of a so-called in-circuit debugger or emulator device.
To this end, a microcontroller or microprocessor provides for
internal circuitry that supports debugging functions and a
specific interface which can be for example activated by
programming multiple function pins of the device to operate
as the debug interface. Such an interface usually can be con-
figured as a high speed serial interface to allow for fast com-
munication between the actual device and the external debug-
ger or emulator. The device itself can thus be operated in a
normal operating mode which does not activate this interface
and associated pins can be used for other purposes and a
debug operating mode which uses this interface to exchange
data with respective external devices, such as debuggers or
emulators that can be operated from and by an external host
computer. The debuggers or emulators can also be operated as
programmers, wherein the program is transferred into the
target device via the same debug interface. Host computer,
external debugger or emulator thus forms an inexpensive
analysis and debugging system.

Modern processors and microcontrollers provide for an
extended set of debug functions inside the respective device.
For example, a number of breakpoints can be set within the
device to allow the device to actually run in real time which
would not be possible with an external debugger when using
just a high speed serial interface and thus would require
bond-out chips and expensive debug circuitry. However, the
functionality of these internal debug circuitries is of course
somewhat limited due to a limited amount of silicon real
estate and other reasons. However, these type of breakpoints
only allow for a limited amount of configuration.

SUMMARY

Therefore a need exists, for an improved breakpoint con-
figuration within a microcontroller or microprocessor to
allow for a more flexible debugging. For example, it would
beneficial to allow for configuration of a breakpoint based on
an interrupt status. According to various embodiments, such a
configurable setting for the breakpoint allows the breakpoint
to qualify its matching and halting of the device with the
interrupt state.

According to an embodiment, a processor device having
debug capabilities, may comprise a central processing unit,
an interrupt controller, a status unit operable to be set into a
first mode indicating an interrupt has occurred or in a second

10

15

20

25

30

35

40

45

50

55

60

65

2

mode indicating normal execution of code, a debug unit
coupled with the status unit and comprising a configurable
breakpoint, wherein a condition can be set that a breakpoint is
only activated if the device is operating in an interrupt service
routine.

According to a further embodiment, the status unit may
comprises a final stage interrupt detection unit, and a return
from interrupt detection unit. According to a further embodi-
ment, the final stage interrupt detection unit may only gener-
ate a logic signal indicating that an interrupt has occurred
when the device will be forced to enter the interrupt service
routine. According to a further embodiment, the status unit
may further comprise a first multiplexer having a first input
receiving a logic 1 at a first input and being controlled by the
final stage interrupt detection unit; a second multiplexer
receiving a logic 0 at a first input and having a second input
coupled with an output of the first multiplexer, wherein the
second multiplexer is controlled by the return from interrupt
detection unit; a clock controlled register receiving an output
signal from the second multiplexer and having an output
coupled with a second input of the first multiplexer wherein
the output of the register indicates a current interrupt status of
the central processing unit. According to a further embodi-
ment, the register can be a D-flip-flop. According to a further
embodiment, the debug unit can further be configured to
activate a breakpoint when the device is not executing an
interrupt service routine. According to a further embodiment,
the debug unit can further be configured to always activate a
breakpoint. According to a further embodiment, the debug
unit may comprise a mode selection circuit comprising logic
gates to set one of three operating modes, wherein the first
mode allows triggering of a breakpoint only when the central
processing unit executes an interrupt service routine, the sec-
ond mode allows triggering of a breakpoint only when the
central processing unit does not execute an interrupt service
routine, and the third mode always allows triggering of a
breakpoint. According to a further embodiment, the device
may comprise a breakpoint configuration unit configured to
allow breakpoints being defined by at least one of the follow-
ing conditions, an instruction address; an instruction address
range; a data read access to a predefined address and a data
write access to a predefined address. According to a further
embodiment, a condition of a data write access for a break-
point may further define a data value of a predetermined data
address. According to a further embodiment, a number of
breakpoint occurrences can be defined that need to be met
before execution of a program is stopped at the breakpoint.
According to a further embodiment, the device may further
comprise an event combiner operable to combine a plurality
of events to generate stop execution of program.

According to another embodiment, a method for debug-
ging executed code within a processor device having debug
capabilities, may comprise: executing code by a central pro-
cessing unit (CPU); determining an interrupt service status of
the CPU while executing the code by a debug unit; configur-
ing a breakpoint within the debug unit to be activated only
when the CPU is executing an interrupt service routine; and
upon occurrence of a breakpoint, only activating the break-
point within the debug unit if the CPU is executing instruc-
tions within an interrupt service routine.

According to a further embodiment of the method, for
determining the interrupt service status of the CPU, the debug
unit can be configured to determine a final stage interrupt state
of the CPU which leads to execution of an interrupt service
routine, and to determine execution of a return from interrupt
instruction. According to a further embodiment of the
method, the debug unit can further be configured to activate a

US 9,336,122 B2

3

breakpoint when the device is not executing an interrupt
service routine. According to a further embodiment of the
method, the debug unit can further be configured to always
activate a breakpoint. According to a further embodiment of
the method, the method may further comprise the step of
selecting an operating mode of the debug unit, wherein a first
mode allows triggering of a breakpoint only when the central
processing unit executes an interrupt service routine, a second
mode allows triggering of a breakpoint only when the central
processing unit does not execute an interrupt service routine,
and a third mode always allows triggering of a breakpoint.
According to a further embodiment of the method, the
method may further comprise configuring a breakpoint con-
figuration to allow breakpoints being defined by at least one
of the following conditions: an instruction address; an
instruction address range; a data read access to a predefined
address and a data write access to a predefined address.
According to a further embodiment of the method, a condi-
tion of a data write access for a breakpoint may further define
a data value of a predetermined data address. According to a
further embodiment of the method, a number of breakpoint
occurrences can be defined that need to be met before execu-
tion of a program is stopped at the breakpoint.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a block diagram of an integrated debug
module according to various embodiments;

FIG. 2 shows a hardware breakpoint block diagram of FIG.
1 in more detail;

FIG. 3 shows an event combiner block diagram of FIG. 1 in
more detail;

FIG. 4 shows an enhanced breakpoint handling unit;

FIG. 5 shows a block diagram of a system using a micro-
controller with an embedded debug unit according to various
embodiments and an external in circuit debug (ICD) control-
ler.

DETAILED DESCRIPTION

By providing interrupt related settings in the breakpoints, it
allows the match condition to be further narrowed down and
further qualified. This provides a functionality that is not
available in conventional devices. This allows a breakpoint to
only match inside of the interrupt service routine (ISR), or
match only outside of the ISR.

The various embodiments therefore advance the state of
the art in on-chip debug capabilities. According to various
embodiments, a device has the ability to accurately determine
if the device was executing code from the interrupt routine or
from the mainline routine, and to use this information to
enable or disable certain breakpoint features accordingly.
This configurable setting for the breakpoint allows the break-
point to quality its matching and halting of the device with the
interrupt state.

FIG. 1 shows a block diagram of an in-circuit-debug mod-
ule that can be integrated within a microcontroller according
to an embodiment. However, the general concept as described
above can be implemented in other types of on-chip debug
circuitry. The block diagram shows a module that can be
implemented for example in a microcontroller and may con-
sists of five basic blocks:

Breakpoint Compare Logic 135

Stop-Watch Cycle counter Logic 150

Control and State Machine Logic 145

Trace Logic 120

Event Combiner logic 125

5

10

15

20

25

30

35

40

45

50

55

60

65

4

A microcontroller comprises a central processing unit
(CPU) 110 and an associated interrupt controller 112 coupled
with CPU 110. CPU 110 is furthermore coupled with hard-
ware breakpoint unit 135, event detection unit 140, control
logic unit 145 and background interface 155 through an inter-
nal bus. Specific functions of these blocks will be explained in
more detail below. Multiplexer 160 is used to allow coupling
of'the debug unit with an external debugger through dedicated
debug clock and data pins 165. The control logic 145 may be
coupled with one or more external pins. FIG. 1 also shows an
exemplary TRGIN pin 185 that may be used with a trace unit
120. Such a pin may be a dedicated pin with no other function.
However, in particular in low-pin devices, such a pin may be
amulti-function pin that allows to be assigned under program
control to different peripheral devices and therefore can per-
form different functions according to its programmed assign-
ment. For example, such a pin may be programmed by means
of'a configuration register to be in addition to the trace trigger
in function to act as a serial interface clock pin, a digital [/O
pin, an analog input pin, etc. As shown in FIG. 1 the control
logic also provides for a trigger out pin 190 that can be similar
to pin 185 a multi-function pin. The trace module 120 may be
coupled with a trace stall input pin 115, and trace clock and
data output pins 175. FIG. 1 also shows pulse reject filters 170
and 180 that may be configurable through control logic 145.
Signal routing through such filters is not shown in FIG. 1.
According to some embodiments, breakpoint debugging is
implemented such that execution is halted before the instruc-
tion is executed, a so-called “zero skid” operation. According
to other debugger embodiments this may not be true and may
cause problems with where code stops or “skids”, allowing an
instruction to execute before the processor is halted. External
events are (by definition) asynchronous to the instruction
execution stream. As such, their operation cannot be com-
pared to zero skid concepts.

When an internal signal debug _en=1, the module is
enabled and monitors all the “HALT” events, generates
events, performs data capture, etc. If the internal signal debu-
g_en=0, all debug logic is disabled and the module is config-
ured to consume minimum power mode.

To make debugging less invasive, it may be useful to have
a means of streaming data off the device in real-time. The
trace module 120 supports a method taking data being read or
written to a specific address and transmitting it out the Trace
port. This can be described as a Real-time watchpoint. Nor-
mal operation of the device is not interrupted when using a
watchpoint.

FIG. 2 shows the normal function of the hardware break-
point unit 135 according to various embodiments. Enhanced
functionality will be explained in more detail below. Hard-
ware breakpoints can be configured to break on matching
addresses in either program or data memory. To this end,
respective comparators 220 and 230 and decoding units 240
are provided as shown in FIG. 2. When the breakpoint is
selected to operate on data memory, the breakpoint can addi-
tionally be qualified with data value and a mask, allowing
only certain values to generate a breakpoint event. Data
breakpoints can also optionally be set to only break onread or
write cycles. In all cases, the breakpoints have a counter 210
so that the specific event must occur N times before the
breakpoint event is generated. This can be set, for example,
for any value from 1 to 256 times according to some embodi-
ments.

The block diagram of FIG. 2 is shown for a single break-
point. The number of breakpoints implemented is however
variable according to various embodiments, many break-
points may exist. FIG. 2 shows an exemplary embodiment

US 9,336,122 B2

5

that allows various parameters to be programmed to define
the trigger requirements for a breakpoint. According to other
embodiments, less or more of such parameters may be used.
For example, the number of breakpoint occurrences neces-
sary to generate a breakpoint can be set by the BPxCNT
parameter in counter 210. Each breakpoint module may have
identical registers.

Breakpoints are listed among the event channel definitions
and can be used to start or stop the cycle counter 150, set or
reset an event combiner stage 125, start or stop trace unit 120,
or take a stack snapshot.

According to one embodiment, for the breakpoint to be
enabled, the bit BPEN of a control register ICDBPxCON
must be set. If this bit is cleared, all circuitry for this specific
breakpoint is disabled and no breakpoint events will be gen-
erated. The breakpoint can be configured to only trigger an
action on every N-th occurrence of the qualifying conditions.
For example, to set a breakpoint to trigger on every third
occurrence, the counter 210 is set to BPxCNT=2. Respective
control registers may be used in combination with counter
210 to reload its value and/or monitor the current state.

Breakpoints may also be qualified based on execution con-
text (main line code, interrupt handler, or either), by setting
respective bits, for example in an associated configuration
register. A breakpoint may then only occur when the program
is executing from a selected context as will be explained in
more detail below.

Yet another breakpoint parameter may be used, by setting
respective bits in a configuration register, which allow to
monitor the program counter (PC execution address). Pro-
gram Memory breaks are zero skid, and occur before the
operation is executed. The PC will indicate the address of the
trigger instruction.

When a respective control bit is cleared, e.g.
BPAREN="0’, a break is triggered when the PC equals a
predefined address. When BPAREN=;1', a break is trigged
when the PC falls within the predefined inclusive range of
addresses.

According to some embodiments, only executed instruc-
tions can generate a breakpoint. If the PC is at an address that
is not executed, the breakpoint does not trigger. This includes:

flow changing instructions (CALL, RETURN, etc.),

skipped instructions (per BTFSS, BTFSC), or

the next fetch after a PCL, FSR, or other two cycle instruc-

tions.

When another control bit field is set to 01, 10, or 11 in a
control register, the breakpoint monitors data accesses, both
address and value. The three states of the associated bits select
whether read or write cycles are used to determine the break-
point.

Data breakpoints, by necessity, cause a break at the end of
instruction execution, after data is read or written (as appli-
cable). In all cases, the instruction runs to completion.
Accordingly, the “break” actually occurs on the next instruc-
tion execution, and the PC will indicate the instruction fol-
lowing the trigger instruction. A break may also be triggered
when both the memory address and data value qualifiers have
been met.

The cycle counter 150 is a counter used to provide a stop-
watch function so that user code can be profiled. The cycle
counter is controlled by respective control registers. The
counter 150 may consist of four 8-bit counter/registers. The
counter 150 may be incremented at the end of every Q-cycle
of'the CPU; multi-cycle instructions (e.g., GOTO) count mul-
tiple times.

In order to allow multiple functions to be controlled by
specific events, all of the possible sources may be combined

25

40

45

50

65

6

into one event bus. This allows the Cycle Counter 150, Trace
unit 120, and Event combiners unit 125 to use the same
settings to select their actions.

An event combiner 300 as shown in FIG. 3 monitors mul-
tiple event inputs 320 and can generate a halt or a trigger out
190 based on combinations and sequences of those inputs. An
event combiner 300 is enabled when a respective control bitis
set. Disabled combiners 300 do not produce output events.
Event combiners 300 are listed among the event channel
definitions and can be used to start or stop the cycle counter
150, set or reset an event combiner stage 310, start or stop
trace unit 120, or take a stack snapshot. Event combiner
stages 310 are independently enabled when respective control
bits for that stage are set in associated control registers. A
stage’s current output will be reflected in an associated status
bit. Stages 310 have an implied order as shown in FIG. 3, and
can be combined in a number of ways:

a stage can be activated individually by an event,

a stage can be activated by an event while the next lower

stage is active,

a stage can be deactivated individually by an event,

a stage can be deactivated by an event or when the next

lower stage is deactivated.

By setting a respective control bit, only the (N+1)-th occur-
rence of the combined event(s) will signal an output event. N
can be set from 0 to 255. If the combined trigger conditions
are met, then the register is decremented by 1. Ifthe combined
trigger conditions are met, an event combiner event is gener-
ated and the counter is reloaded with the preset value. Also,
any time a new count value is written into the respective
control register, the value in the counter is reloaded. For
example, to set a breakpoint to trigger on the third occurrence,
the respective counter value should be set to 2.

When an event, such as a breakpoint, occurs with an
enabled trigger, a pulse on the TRGOUT pin 195 may be
generated. The basic trigger output signal operation is con-
figured by setting respective control bits. These control bits
may for example control that the Trigger Output is asserted
for approximately the duration of the trigger event. Adjacent
or overlapping events may hold the signal in the asserted
state. The control bits may also control whether the output is
stretched to a minimum time period. Once the TRGOUT
one-shot is triggered, more events occurring within the timing
period will be ignored. After the one-shot times out and
TRGOUT returns to zero, it may again be triggered by
another event. The one-shot is edge triggered, and will clear
after a predefined time period even ifthe event signal persists.

Software may cause a Trigger Out by setting a respective
control bit. If the device is awake, the bit is cleared by hard-
ware after 1 cycle. TRGOUT may also be cleared by writing
arespective control bit, or will be cleared automatically when
the device wakes up.

The enhanced breakpoint functionality will be explained in
more detail as follows with reference to FIG. 4. The circuit
shown in FIG. 4 comprises two blocks 400a and 4004.

The first circuit part 400a determines a current state of the
central processing unit (CPU) with respect to whether the
CPU is operating within an interrupt service or executing its
“normal” (non-exception) routine. To this end, a first multi-
plexer 410 is provided having two inputs, an output, and a
control input. The first input “0” receives a feedback signal
and the second input “1” is hardwired with a logic 1. The
control input of multiplexer 410 receives a logic signal gen-
erated by a final stage interrupt detection unit 430. The output
of multiplexer 410 is coupled with a first input “0” ofa second
multiplexer 420 having two inputs, an output, and a control
input. The control input of multiplexer 440 receives a further

US 9,336,122 B2

7

logic signal from a return from interrupt detection unit 440.
The second input “1” of multiplexer 420 is hardwired with a
logic “0”. The output of multiplexer 420 is coupled with the
data input of D-flip-flop 450. Flip-flop 450 is clock driven by
system clock CLK and generates an output signal at its output
Q that is fed back to the first input of multiplexer 410. This
output signal indicates whether the CPU is executing code
within an interrupt service routine (ISR) or not.

The second part 4005 of the circuit shown in FIG. 4 pro-
vides for a function selection. Three operating modes can be
selected. A breakpoint event signal can be generated by a
breakpoint unit as described above. However, other break-
point units with more or less functionality may be used
according to some embodiments. This breakpoint event sig-
nal is fed to first inputs of three AND gates 460, 470, and 480.
A second input of each AND gate 460, 470 and 480 receives
a logic signal determining the operating mode. For example,
a first signal “Break In ISR Mode” may be used to allow
detection of breakpoints only when the CPU is executing an
interrupt service routine. The second signal “Break In Non-
ISR Mode” provides for an operating mode in which break-
points are only operative when the CPU is not in executing
codes in an ISR. The third signal “Always Break Mode”
provides for a conventional operating mode in which all
active breakpoints are operative notwithstanding the fact
whether the CPU executes an interrupt service routine or not.
AND gates 460 and 470 provide for a third input which
receives the non-inverted output signal from flip-flop 450 and
an output signal from flip-flop 450 that is inverted by means of
inverter 475, respectively. OR gate 490 having three inputs is
provided to receive output signals from the three AND gates
460,470, and 480. The output of OR gate 490 provides for the
final breakpoint signal.

Flip-flop 450 stores the current state of the interrupt execu-
tion. The Final Stage Interrupt Detect-Unit 430 is used to
determine when the interrupt is occurring. It is important that
once the Final Stage Interrupt Detect unit 430 only generates
a respective output signal that is active when nothing is
allowed to prevent the interrupt from occurring. Otherwise
this would cause the detect to be false and a false detect could
result in improper behavior. Once the “Final Stage Interrupt
Detect” output signal is active, the flip-flop 450 will become
set which indicates that the device is currently executing from
the Interrupt Service Routine (ISR), and consequently the
“ISR Execution” signal will become and remain high.

The flip-flop 450 will clear itself upon “Return From Inter-
rupt Detect.” This is typically a special instruction decode that
is only used for returning from the ISR. It should be noted that
“Final Stage Interrupt Detect” and “Return From Interrupt
Detect” are mutually exclusive.

Flip-flop 450 will also clear itself upon a system reset. This
is important, because after the system is reset the device, if
previously executing from the ISR, would otherwise now be
considered to execute from the non-ISR.

Other circuits may be used to determine the current status
of the CPU. For example, the CPU may have internal flags
that actually show whether an interrupt is being executed or
not that could be used as an ISR Execution signal. Further-
more, circuits that allow detection of nested interrupt service
routines may be provided that allow execution of prioritized
interrupts and therefore allow to interrupt current low priority
ISR with a higher prioritized ISR. Essential is that a signal is
provided that accurately indicates whether the CPU executes
code from an ISR or not.

Block 4005 of FIG. 4 shows how such an “ISR Execution”
signal can be used by the associated breakpoint logic to either
allow or disallow a breakpoint event from occurring. This

10

15

20

25

30

35

40

45

50

55

60

65

8

logic has three mutually exclusive settings: “Break In ISR
Mode,” which only allows breakpoints inside of the ISR;
“Break In Non-ISR Mode,” which only allows breakpoints
outside of the ISR; and “Always Break Mode,” which allows
breakpoints regardless of the ISR execution. Combining
these two pieces allows the breakpoint to be configured based
on the interrupt status. The mutual exclusive signals can be
generated by respective configuration logic using one or more
configuration registers. For example a bit field in a configu-
ration register may be used to encode the three different
operating modes. Other signal decoding may be used accord-
ing to other embodiments.

Accurately determining that an interrupt is occurring can
be difficult. It is necessary to use a signal that indicates,
unequivocally, that the interrupt will occur. There are often a
staging to the interrupt process and earlier stages in the inter-
rupt can be delayed or blocked to prevent the interrupt from
occurring. Only the final signal, which cannot be postponed
or blocked, can therefore be used. Upon a device reset, the
system has not interrupted and should be considered to be
non-ISR execution. Without a proper reset for the flip-flop
450, the state prior to the reset could be retained and improper
breakpoint matching would occur.

FIG. 5 shows a typical debugging/programming system
with a host such as a personal computer running a develop-
ment programming and being connected, for example via a
USB interface with an external debugger/programming unit
520. The external debugger programming unit 520 provides
for a dedicated interface which may supply a power supply
voltage generated within the debugger/programmer 520.
However, other embodiments may supply the supply voltage
via a dedicated power source or the target system may be self
powered. The actual debug/programming interface may is
provided by a synchronous serial interface with a unidirec-
tional clock signal ICD .- provided by the debugger/pro-
gramming unit 520 and a bidirectional data line ICD,,,,.
Thus, at a minimum three connection lines, ICD ., ICD, .
and reference potential (GND) may be used to couple the
debugger/programming unit 520 with the target system 510
which as a minimum may be a microcontroller with a debug-
ging/programming interface according to various embodi-
ments as described above.

Such a system allows a user to program the debugging
program running on the host to set various breakpoints having
conditions as explained above. While the debugging software
keeps track of the various breakpoints with respect to their
position in the source code, the debugger/programmer 520
communicates the breakpoint information to the target device
which sets the respective breakpoints and configures its asso-
ciated registers. For example, a specific breakpoint being
triggered by a match of a data value stored in memory may be
set and the enhanced function that a breakpoint is only trig-
gered when an interrupt service routine is executed is acti-
vated. A user then starts execution of the software of the target
device 510 through the debugger software running on the host
PC 530. The execution of the target software is only stopped
when both conditions are true, namely that the CPU of target
510 executes an interrupt service routine and the specified
memory location matched the predefined value. According to
another setting, a subroutine may be used both by a main
routine of the target software and by an interrupt service
routine. If a user encounters trouble with the executed code, in
particular when calling the subroutine from an ISR, normally
a breakpoint would be set in the respective subroutine. How-
ever, if the subroutine is only rarely called by the interrupt
service routine, execution of the target software could result
in many executions stops caused by the main routine calling

US 9,336,122 B2

9

the respective subroutine. This could render the debugging
entirely useless. According to an embodiment, a user can in
such a circumstance set the debugger operating mode to allow
breakpoints only when executing interrupt routines as
explained above. Now, the execution of the target software is
only stopped within the subroutine when the subroutine is
called from an interrupt service routine, thereby filtering out
numerous other possible breakpoint events that would other-
wise stop execution and render a targeted debugging more or
less useless.

What is claimed is:

1. A processor device having debug capabilities, compris-
ing:

a central processing unit;

an interrupt controller;

a status unit operable to be set into a first mode indicating
an interrupt has occurred or into a second mode indicat-
ing normal execution of code;

a debug unit coupled with said status unit and comprising
a configurable breakpoint unit, wherein a condition can
be set for a breakpoint that the breakpoint is only acti-
vated if the device is executing any instruction within an
interrupt service routine and if the status unit is in the
first mode.

2. The device according to claim 1, wherein the status unit

comprises:

a final stage interrupt detection unit, and

a return from interrupt detection unit.

3. The device according to claim 2, wherein the final stage
interrupt detection unit only generates a logic signal indicat-
ing that an interrupt has occurred when the device will be
forced to enter the interrupt service routine.

4. The device according to claim 2, wherein the status unit
further comprises:

a first multiplexer having a first input receiving a logic 1 at

a first input and being controlled by the final stage inter-
rupt detection unit;

a second multiplexer receiving a logic O at a first input and
having a second input coupled with an output of the first
multiplexer, wherein the second multiplexer is con-
trolled by the return from interrupt detection unit;

a clock controlled register receiving an output signal from
the second multiplexer and having an output coupled
with a second input of the first multiplexer wherein the
output of the register indicates a current interrupt status
of the central processing unit.

5. The device according to claim 4, wherein the register is

a D-flip-flop.

6. The device according to claim 1, wherein the debug unit
can further be configured to activate a breakpoint when the
device is not executing an interrupt service routine.

7. The device according to claim 6, wherein the debug unit
can further be configured to set an unconditional breakpoint.

8. The device according to claim 7, wherein the debug unit
comprises a mode selection circuit comprising logic gates to
set one of three operating modes, wherein the first mode
allows triggering of a breakpoint only when the central pro-
cessing unit executes an interrupt service routine, the second
mode allows triggering of a breakpoint only when the central
processing unit does not execute an interrupt service routine,
and the third mode always allows triggering of a breakpoint.

10

15

20

25

30

35

40

45

50

55

60

10

9. The device according to claim 1, wherein the config-
urable breakpoint unit is operable to allow breakpoints being
defined by at least one of the following conditions, an instruc-
tion address; an instruction address range; a data read access
to a predefined address and a data write access to a predefined
address.

10. The device according to claim 9, wherein a condition of
a data write access for a breakpoint may further define a data
value of a predetermined data address.

11. The device according to claim 9, wherein a number of
breakpoint occurrences can be defined that need to be met
before execution of a program is stopped at the breakpoint.

12. The device according to claim 9, further comprising an
event combiner operable to combine a plurality of events to
generate a debug event.

13. A method for debugging executed code within a pro-
cessor device having debug capabilities, comprising:

executing code by a central processing unit (CPU);

determining an interrupt service status of the CPU while
executing said code;

configuring a breakpoint within a debug unit to be activated

only when said CPU is executing any instruction within
an interrupt service routine after an interrupt has
occurred;

upon occurrence of a breakpoint, only activating said

breakpoint within said debug unit if said CPU is execut-
ing any instruction within an interrupt service routine
after an interrupt has occured.

14. The method according to claim 13, wherein for deter-
mining the interrupt service status of the CPU, the debug unit
is configured to determine a final stage interrupt state of the
CPU which leads to execution of an interrupt service routine,
and

to determine execution of a return from interrupt instruc-

tion.

15. The method according to claim 13, wherein the debug
unit can further be configured to activate a breakpoint when
the device is not executing an interrupt service routine.

16. The method according to claim 15, wherein the debug
unit can further be configured to asset an unconditional break-
point.

17. The method according to claim 13, further comprising
the step of selecting an operating mode of the debug unit,
wherein a first mode allows triggering of a breakpoint only
when the central processing unit executes an interrupt service
routine, a second mode allows triggering of a breakpoint only
when the central processing unit does not execute an interrupt
service routine, and a third mode always allows unconditional
triggering of a breakpoint.

18. The method according to claim 13, further comprising
configuring a breakpoint configuration to allow breakpoints
being defined by at least one of the following conditions: an
instruction address; an instruction address range; a data read
access to a predefined address and a data write access to a
predefined address.

19. The method according to claim 18, wherein a condition
of a data write access for a breakpoint may further define a
data value of a predetermined data address.

20. The method according to claim 18, wherein a number
of'breakpoint occurrences can be defined that need to be met
before execution of a program is stopped at the breakpoint.

#* #* #* #* #*

